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Abstract 

The drying kinetics of yam slices is a critical process in food preservation, influencing both the 

quality and shelf life of the product. This study explores the application of Artificial Neural 

Network (ANN) modeling to predict the drying behavior of yam slices under various drying 

conditions. A series of experiments were conducted to obtain moisture loss at a varying 

thicknesses (5-12mm), temperatures (50-90°C) and air velocities(1.5-5.5m/s) at a time interval 

of for 0 - 220 minutes. To observe a good representation of situation diversity, experimental 

data were divided into learning and testing databases. The network's inputs (In) were air 

temperature (T)/80, air velocity (V)/5.5, slice thickness (d)/12, and time (t)/220; the output 

(Out) was moisture content (db). The collected data were then used to train and validate an 

ANN model, which was designed to capture the complex nonlinear relationships inherent in 

the drying process. The ANN architecture was optimized through a systematic approach, 

including the selection of appropriate input parameters (temperature, time, and air velocity) 

as well as the determination of hidden layers and neurons. The model's performance was 

evaluated using statistical metrics such as relative mean square error (MAE), standard 

deviation of MAE (STDA), percentage of relative mean square error (% MRE), standard 

deviation of % MRE (STDR), and R2. From the findings all three drying kinetics achieved a 

minimum value of root mean square error (RMSE) in the range of 0.00052 to 0.00092.  Results 

indicate that the ANN model effectively simulates the drying kinetics of yam slices. This 

research highlights the potential of ANN as a powerful tool for optimizing drying processes in 

the food industry. The findings contribute to the growing body of knowledge on the application 

of artificial intelligence in food technology, paving the way for future studies on other 

agricultural products. 
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1. INTRODUCTION 

The drying of agricultural products, such as yam slices, is a critical process in food preservation 

and quality maintenance. The kinetics of drying significantly influences the final product's 

texture, flavor, and nutritional value. Traditional methods for predicting drying kinetics often 

rely on empirical models, which may not adequately capture the complex interactions involved 

in the drying process. In recent years, artificial intelligence (AI) techniques, particularly neural 
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networks, have emerged as powerful tools for modeling and predicting drying kinetics due to 

their ability to learn from data and capture non-linear relationships. 

Neural networks, a subset of machine learning, consist of interconnected nodes (neurons) that 

process input data and can model complex functions. Their application in food science has 

gained traction, as they can effectively handle the variability and non-linearity inherent in 

drying processes Assidjo et al. (008;). For instance, studies have demonstrated that neural 

networks can predict moisture content and drying rates with high accuracy, outperforming 

traditional models (Akinmoladun et al., 2021). 

The drying kinetics of yam slices, specifically, can be influenced by various factors, including 

temperature, air velocity, and slice thickness. By employing neural networks, researchers can 

integrate these variables into a predictive model that accounts for the intricate dynamics of 

moisture removal. A study by Akinmoladun et al., (2021).), for instance, used a feedforward 

neural network to forecast how yam slices would dry under various circumstances, and the 

results showed a strong connection between the predictions and the actual data. 

Moreover, the use of neural networks in predicting drying kinetics not only enhances the 

accuracy of predictions but also facilitates the optimization of drying processes. By simulating 

various drying scenarios, stakeholders can make informed decisions regarding drying 

parameters to achieve desired product quality while minimizing energy consumption (Bai et 

al., 2023). 

This study aimed to show the applicability and efficacy of neural networks in modeling and 

predicting moisture transfer during air drying of food items, as well as to anticipate the drying 

process of yam slices when a variety of independent variables are present.  Experimental drying 

data of yam slices was used to validate the model.  

 

2. MATERIALS AND METHODS 

2.1 Principle of Artificial Neural Network 

The basic components of neural networks function in parallel.Similar to nature, the connections 

between neurons have a significant impact on network function, and weight coefficient is 

assigned to each pair of neurons. In accordance with a particular architecture, the neuron is 

separated into layers and connected. The multiple layer perceptron (also known as the feed 

forward network) is the conventional network layout for function approximation. Both linear 

and nonlinear relationships between input and output vectors can be learned using the feed 

forward network, which usually has an output layer of linear transfer functions after one or 

more hidden layers of sigmoid neurons.  Values outside of the -1 to +1 range can be produced 

by the network thanks to the linear output layer (Limin, 1994). For multi-layer networks, the 

weight matrices' superscript is determined by the number of layers. Two-layer networks make 

use of the proper nomenclature. Figure 1 depicts a simplified depiction of the selected network 

topology and behavior. 
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The multilayer neural network's theoretical architecture for predicting moisture content 

(MC, db) 

 

 

  

 

 

 

 

 

 

 

 

 

Fig.1. Artificial Neural Network Topological Structure, where k (number of inputs), ln 

(number of inputs), Out (output), W (weights), and b (biases).  

In the process being studied, the quantity of variables that are input and output determines the 

number of neurons in the input and output layers. The input layer of this study comprises four 

variables: process air temperature (T), drying time (t)sample thickness (s), and air velocity (V). 

In contrast, the output layer has only one variable: moisture content (d.b.). It is challenging to 

determine the ideal number of neurons (ns) for the hidden layer since it depends on the task's 

complexity and nature, tt is usually established by trial and error. To create the neuron input n, 

the weighted inputs are mixed with the bias b of each neuron in the hidden layer. For the 

transfer function f, the argument is this sum, n.  

 n = Wi{1,1}ln1+Wi{1,2}ln2 + ………… +Wi{1, k} lnk+b    …(1)  

Wi1 (weights) and b1 (biases) are two matrices that contain the hidden layer's coefficients. 

Following the computation of the weighted sum of the signals supplied by the hidden layer, the 

output layers arrange the resulting coefficients into matrices Wo3 and B3. The network output 

in matrix notation is provided by Equation (2).  

Out = f’{Wo3 x f (Wi2 x1n+ b2)+b3}                                                 …(2) 

 

Neurons in hidden layers can use any differentiable transfer function to produce output. A 

linear transfer function and a tangent sigmoid transfer function were used in this work to 

represent f and f', respectively. The network coefficients (weights and biases) equation is 

provided by equation (2). 

Input layers  

(i) 

 Hidden layers  
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 Output layers 
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2.2. Learning Algorithm 

The application of artificial neural networks (ANNs) in modeling the drying process of yam 

slices involves a systematic learning algorithm procedure. This procedure typically includes 

data collection, preprocessing, model design, training, validation, and testing. Below is a 

detailed explanation of each step in the context of drying yam slices,  

 2.2.1. Data Collection 

The first step involves collecting experimental data on the drying process of yam slices. This 

data typically includes variables such as Input Variables: Temperature, humidity, air velocity, 

slice thickness, and initial moisture content. Output Variables: Moisture content at various time 

intervals during the drying process. 

Data collected through controlled experiments where yam slices are dried under the different 

conditions, and moisture content was measured at regular intervals. This is similarity with 

Afolabi & Adeyemi (2019). They investigated on modeling of drying kinetics of yam slices 

using artificial neural network. 

2.2.2. Data Preprocessing 

Drying yam slices with thicknesses of 5-12 with varying of 3mm at five distinct air 

temperatures ranging from 50-90°C with differences of 10°C and five air velocities velocities 

from 1.5 to 5.5m/s at discrepancies of 1m/s and at time interval of 0 - 220 minutes yielded 

experimental data. It produced approximately 1400 experimental data. To provide a good 

Experimental data were separated into databases for testing and learning to represent the 

diversity of situations.  Slice thickness (d)/10, air temperature (T)/80, air velocity (V)/5.0, and 

time (t)/220 were the inputs (In) of the network, and moisture content (db) was the output (Out). 

Once the data is collected, it needs to be preprocessed to ensure it is suitable for training the 

ANN. This step may include: Scaling the input and output data to a specific range (e.g., 0 to 1) 

to improve the convergence of the learning algorithm. Dividing the dataset into training, 

validation, and testing sets 

2.2.3. Training the Model 

The training process involves using the training dataset to adjust the weights of the network 

through a learning algorithm, typically backpropagation. The steps include: 

The network processes input data to produce predictions.  The mean squared error, for example, 

is a loss function that is used to compute the difference between the expected and actual output.  

An optimization approach is used to change the weights after the loss has been transmitted back 

through the network. 

2.2.4. Validation 

During training, the model's performance is evaluated using the validation dataset. This helps 

in: Adjusting parameters such as learning rate, number of epochs, and batch size to improve 

model performance. Monitoring validation loss to ensure the model does not memorize the 

training data. this is in relation to Bishop (2006) investigation. After training and validation, 

http://www.iiardjournals.org/
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the final model is tested using the testing dataset to evaluate its generalization performance. 

Metrics such as root mean square error (RMSE) and coefficient of determination (R²) were 

commonly used to assess the model's accuracy Khashei & Bijari (2010).  

 

3. RESULTS AND DISCUSSION 

In the first attempt, ANN models were trained using a dataset that contained one output MC 

(dm/dt or MR) and four inputs (air temperature, air velocity, slice thickness, and time).  The 

ANN model was set up differently.  Trial-based adjustments were made to the learning rate, 

which establishes how much weight changes over a sequence of iterations to bring the predicted 

value within a reasonable range of the observed values, while keeping the hidden neurons 

constant at 8 in the first hidden layer and 4 in the second.  Higher learning rates (η) were shown 

to produce poorly developed models in preliminary studies, which is in line with the 

conclusions of Rai and Chhaya & Rai (2008).  Following these test runs, 0.05 was set as the 

learning rate and momentum.  During training, simulations were conducted 2500 times at a 

progress rate of 50, and the neural network weights were set to the lowest practical forecasting 

error (Fig. 2).  

             0       250        500       750  1000  1250   1500   1750   2000   

2250   2500 

    2500 Epochs 

Figure 2 shows how the number of iterations (epochs) affects the root-mean-square error 

training. 

A basic propagation network trained with the Levenberg-Marquardt algorithm was found to be 

quite good in generalizing and predicting the moisture content showing the final product after 

drying. All three drying kinetics achieved a RMSE (root mean square error) minimal value 

between 0.00052 and 0.00092. These findings were consistent with prior study (Chhaya and 

Rai, 2008). Figure 2 plots the RMSE values for the trial for moisture content against the number 

of iterations. The topology that produced the least amount of error in the fewest number of 

iterations when training the ANN was chosen.  
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3.1 Verification of ANN Models 

The prediction performance of all three ANN models (MC, dm/dt, and MR) was confirmed 

using data from 20% of the instances that were excluded during the ANN models' original 

training.  With a coefficient of determination of 0.9987, a standard deviation of 0.114, and a 

mean relative error of 8.258, Table 1 shows that the basic ANN model with two hidden neurons 

predicted MC. 

Table 1 shows the ANN architecture with the minimum MRE for each combination when the 

treated sample is dried in hot air. 

 

With a coefficient of determination of 0.9940, a standard deviation of relative error of 0.2370, 

and an average relative error of 17.300, the drying rate was predicted by the ANN model using 

two hidden neurons or dm/dt. The moisture ratio prediction (MR) had the subsequent 

coefficient of determination, MRE, and STDR: 0.9980, 0.1600, and 9.4730, respectively.  

Lertworasirikul and Tipsuwan (2008) used a single hidden layer with nine nodes and a 

logarithmic sigmoid transfer function to estimate the water activity and moisture content of 

semi-cracker cassava that was dried in a tray dryer using hot air. They found that the regression 

coefficient (R2) and mean squared error were 0.9982 and 0.0010 respectively which closely 

match the findings of the present investigation. Eighty percent (80%) of each dataset was used 

for training, and the remaining twenty percent was used for testing. The information set was 

utilized to ascertain the ideal number of hidden layers and neurons per hidden layer during 

training in order to get the maximum prediction power. The artificial neural network's structure 

included neurons 2–10 and hidden layers 1 and 2. All combinations of neurons and hidden 

layers were learned. Calculations were made R2, the proportion of relative mean square error 

(% MRE), the standard deviation of % MRE (STDR), the number of hidden layers and neurons 

in each hidden layer, and the relative mean square error (MAE) and standard deviation of MAE 

(STDA).  It was demonstrated that the drying procedure had an impact on the quantity of hidden 

layers and neurons in each hidden layer that generated the least level of error. The entire ANN 

structure is displayed in Table 3 for all data sets of blanched and treated samples as well as hot 

air-dried blanched samples. If there are sufficient neurons, a high The quantity of hidden layers 

is not necessary to reduce the error (Torrecilla et al., 2007). Two hidden layers were the most 

accurate forecast for most of the data set. The ANN designed for combined drying data is a 

little less accurate than one designed for individual circumstances. 

http://www.iiardjournals.org/
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Experimental 

Figure 3 shows the correlation between the treated sample's experimental and anticipated 

results. 

Figure 3 shows plots of experimentally measured moisture content, drying rate, and moisture 

ratio vs ANN-simulated values for all combined data. The correlation coefficients were all 

larger than 0.99. the R2 values were while the R2 values for blanched samples were 0.9984, 

0.9917, and 0.9987, respectively, the moisture content, drying rate, and moisture ratio had R2 

values of 0.9987, 0.9930, and 0.9984.  This proves that ANN is capable of precisely predicting 

the moisture ratio, drying rate, and moisture content.  These results are similar to those of a 

previous study on cassava (Hernandez-Perez et al., 2004), where correlation coefficients more 

than 0.9998 were found between the observed and projected moisture content.  The ANN's 

system equations for predicting moisture content, drying rate, and moisture ratio are shown in 

Table 3. The equation depicts each node's input, transfer function, as well as its respective 

weights and bias. The equations can be utilized in a computer program to forecast yam slices 

cube drying rate, moisture ratio, and moisture content (Islam et al. 2003).  The moisture content, 

drying rate, and moisture ratio of blanched and treated samples had the lowest and greatest 

errors between actual and projected values, respectively, of 0.009-0.017, 0.0157-0.0330, and 

0.0061-0.0212; for blanched samples, the corresponding errors were 0.009-0.017, 0.0181-

0.0266, and 0.0082-0.0178.  It is evident that the model correctly forecasted the drying kinetics 

seen in the experiment.  This highlights how crucial it is to model food drying curves using 

artificial neural networks.  Due to the fact that simulation is carried out using basic 

mathematical procedures, these models are not complicated and may therefore be utilized for 

online estimation in industrial air drying processes (Erenturk & Erenturk, 2007).    
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Table 2: ANN model for Moisture Content Prediction (dB, %) 

 

 
 

 

Figure 4: Simulations and experimental data on moisture ratio curves produced using the 

suggested model for yam slice drying kinetics.   

Figure 4 shows how the models can forecast drying kinetics for a smaller validity range (e.g., 

700C, 4.5 m/s & 0.5, 0.8, and 1.2 cm) at varying thicknesses, temperatures, and air velocities. 

Throughout the drying phase, the drying rate consistently dropped in each case (Diamante and 

Munro, 1993) 
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.  

Figure 5 shows the simulated curves and experimental data produced by the suggested model 

for the drying kinetics of yam slices.   

The level of moisture Figure 5 displays some experimental data and simulated findings for 

moisture content that were gathered by the drying air temperature test database between 50 and 

900C at a speed of 4.5 m/s and a size of 0.8 cm. The model's ability to predict the experimental 

drying kinetics is clearly successful. This highlights the significance of using artificial neural 

networks to model food drying curves. These models can be utilized for online estimate in 

industrial air drying processes since they are simple to use and simulation is achieved by basic 

arithmetic operations. 

CONCLUSIONS  

Using experimental data and numerical simulations under various operating conditions, the 

suitability of an ANN for modeling a hot air dryer was examined and demonstrated. According 

to the findings, the suggested ANN is effectively used to simulate a convective hot air drier 

for drying yam slices. The accuracy of the suggested neural network model in estimating the 

moisture content was greater than 0.05%. When the ANN was trained using a learning 

coefficient of 0.5 and 2500 iterations, it demonstrated an appropriate level of generalization 

and accuracy to predict the moisture content of the dried yam slices. Values greater than these 

did not considerably enhance the ANN's predictions. The suggested neural network model was 

shown to eliminate reliance on the mathematical model in addition to minimizing R2. The 

experimental drying kinetics were thus successfully predicted by the neural network model. 

This demonstrates that since estimation is achieved by basic arithmetic processes, the 

significance of the artificial neural network model is not complicated. As a result, artificial 

neural networks can be effectively utilized for both online drying kinetics estimate and drying 

process control in industrial operations.  
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